题目内容

19、求证:在一个三角形中,至少有两个内角是锐角.
分析:用反证法进行证明;先假设原结论不成立,经过推导得出与三角形内角和定理相矛盾,从而得出原结论成立.
解答:证明:假设△ABC中最多有一个角是锐角,不妨设∠A<90°,∠B≥90°,∠C≥90°;
于是,∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾;
假设△ABC中没有一个角是锐角,不妨设∠A≥90°,∠B≥90°,∠C≥90°;
于是,∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾.
所以假设不成立,则原结论是正确的.
点评:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:
(1)假设结论不成立;
(2)从假设出发推出矛盾;
(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网