题目内容
【题目】如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( ) ![]()
A.(4,2
)
B.(3,3
)
C.(4,3
)
D.(3,2
)
【答案】A
【解析】解:如图,作AM⊥x轴于点M. ![]()
∵正三角形OAB的顶点B的坐标为(2,0),
∴OA=OB=2,∠AOB=60°,
∴OM=
OA=1,AM=
OM=
,
∴A(1,
),
∴直线OA的解析式为y=
x,
∴当x=3时,y=3
,
∴A′(3,3
),
∴将点A向右平移2个单位,再向上平移2
个单位后可得A′,
∴将点B(2,0)向右平移2个单位,再向上平移2
个单位后可得B′,
∴点B′的坐标为(4,2
),
故选A.
【考点精析】利用等边三角形的性质和坐标与图形变化-平移对题目进行判断即可得到答案,需要熟知等边三角形的三个角都相等并且每个角都是60°;新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等.
练习册系列答案
相关题目