题目内容
如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=-n始终保持相切,则n= (用含a的代数式表示).
【答案】分析:设P(m,am2).如图,连接PF.设⊙P与直线y=-n相切于点E,连接PE.根据题意知PE、PF是⊙P的半径,所以利用两点间的距离公式得到
=am2+n,通过化简即可求得n的值.
解答:
解:如图,连接PF.设⊙P与直线y=-n相切于点E,连接PE.则PE⊥AE.
∵动点P在抛物线y=ax2上,
∴设P(m,am2).
∵⊙P恒过点F(0,n),
∴PF=PE,即
=am2+n.
∴n=
.
故答案是:
.
点评:本题考查了二次函数综合题,此题涉及到了二次函数图象上点的坐标特征,两点间的距离等知识点.根据题意得到PF是⊙P的半径是解题的关键.
解答:
∵动点P在抛物线y=ax2上,
∴设P(m,am2).
∵⊙P恒过点F(0,n),
∴PF=PE,即
∴n=
故答案是:
点评:本题考查了二次函数综合题,此题涉及到了二次函数图象上点的坐标特征,两点间的距离等知识点.根据题意得到PF是⊙P的半径是解题的关键.
练习册系列答案
相关题目