题目内容
将直线y=-2x+3向下平移4个单位长度,所得直线的解析式为 .
如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.
(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?
(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由____变化到____.
阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).
请回答:BC+DE的值为________
参考小明思考问题的方法,解决问题:
如图3,已知?ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数________
已知在Rt△ABC中,∠C=90°,AC=1,BC=2,则AB的长为( )
A. 4 B. C. D. 1
△ABC的三条边长分别是a、b、c,则下列各式成立的是( )
A. a+b=c B. a+b>c C. a+b<c D. a2+b2=c2
.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是 ▲ .
关于函数,下列结论正确的是( )
A. 函数图象必经过点(1,2) B. 函数图象经过第二、四象限
C. y随x的增大而增大 D. 不论x取何值,总有y>0
先化简,再求值: ,其中m满足一元二次方程.
如图,一次函数y=﹣x+2分别交y轴、x轴于A,B两点,抛物线y=﹣x2+bx+c过A,B两点.
(1)求这个抛物线的解析式;
(2)作垂直于x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,△NAB的面积有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.