题目内容

某商场销售一批衬衫,平均每天可出售20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施.设每件降价x元,每日销售量为y件,经调查发现,日销售量y(件)与降价x(元/件)之间的关系是:y=20+2x.
(1)若商场平均每天盈利1200元,那么每件衬衫应降价多少元?
(2)通过降价,能否达到每天盈利1500元?如果能,计算降价多少元;若不能,说明理由.
考点:一元二次方程的应用
专题:销售问题
分析:(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,所以此时商场平均每天要盈利(40-x)(20+2x)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.
(2)假设能达到,根据商场平均每天要盈利=1500元,为等量关系列出方程,看该方程是否有解,有解则说明能达到,否则不能.
解答:解:(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,
由题意,得(40-x)(20+2x)=1200,
即:(x-10)(x-20)=0,
解得x1=10,x2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;

(2)假设能达到,由题意,得(40-x)(20+2x)=1500,
整理,得2x2-60x+700=0,
△=602-2×4×700=3600-4200<0,
即:该方程无解,
所以,商场平均每天盈利不能达到1500元.
点评:本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网