题目内容
如图,OA在y轴上,点B在第一象限内,OA=2,OB=
【答案】分析:利用勾股定理求出AB的长,作出图形,根据旋转变换只改变图形的位置不改变图形的形状与大小,可得OA′=OA,A′B′=AB,然后写出点B′的坐标,再利用待定系数法求反比例函数解析式解答.
解答:
解:在Rt△OAB中,∵OA=2,OB=
,
∴AB=
=
=1,
∵△OA′B′是Rt△OAB绕点O顺时针方向旋转90°得到,
∴OA′=OA=2,A′B′=AB=1,
∴点B′(2,-1),
∵点B′在反比例函数y=
(x>0)的图象上,
∴
=-1,
解得k=-2.
故答案为:-2.
点评:本题考查了坐标与图形变化-旋转,待定系数法求反比例函数解析式,利用旋转变换只改变图形的位置不改变图形的形状与大小,求出旋转后的点B的对应点的坐标是解题的关键.
解答:
∴AB=
∵△OA′B′是Rt△OAB绕点O顺时针方向旋转90°得到,
∴OA′=OA=2,A′B′=AB=1,
∴点B′(2,-1),
∵点B′在反比例函数y=
∴
解得k=-2.
故答案为:-2.
点评:本题考查了坐标与图形变化-旋转,待定系数法求反比例函数解析式,利用旋转变换只改变图形的位置不改变图形的形状与大小,求出旋转后的点B的对应点的坐标是解题的关键.
练习册系列答案
相关题目