题目内容
如图是抛物线拱桥,已知水位在AB位置时,水面宽4米,水位上升3米就达到警戒线CD,这时水面宽4米,若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶?
如图,△ABC中,,的平分线交BC于点D,若CD=4,则点D到AB的距离是 .
如图,已知Rt△ABC和Rt△EBC,∠B=90°,∠E=∠ACB,AD//BC交EC于点D,以边AC上的点O为圆心的⊙O过点D、A,
(1)用直尺和圆规确定并标出圆心O;
(2)判断⊙O与EC的位置关系并说明理由.
方程x2=x的解是_________.
如图,把一块含45°直角三角板的锐角顶点与正方形ABCD的顶点A重合.正方形ABCD固定不动,让三角板绕点A旋转.
(1)当三角板绕点A旋转到如图①的位置时,含45°角的两边分别与正方形的边BC、DC交于点E、F.求证:EF=BE+DF;
(2)当三角板绕点A旋转到如图②的位置时,含45°角的两边分别与正方形的边CB、DC交于点E、F.试写出EF、BE和DF三条线段满足的数量关系,不必证明;
(3)在图①中,当正方形ABCD的边长为6,EF=5时,BE的长为
(注意:此问占2分)
一块矩形菜地的面积是120m2,如果它的长减少2m,那么菜地就变成正方形,则原菜地的长是 .
抛物线y =2(x-3)2-2顶点在________象限
如图,△ABC中,D、E分别在边AB、AC上,且,求证∠AED=∠B.
如图,在RtΔABC中,∠C=90º,AC=4cm,BC=3cm.动点M、N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动。连接PM、PN。设移动时间为t(单位:秒,0<t<2.5).
(1)当t为何值时,以A、P、M为顶点的三角形与ΔABC相似?
(2)是否存在某一时刻t,使△PMN 的面积恰好是△ABC 面积的;若存在求t的值;若不存在,请说明理由.