ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿²Ù×÷·¢ÏÖ£º
Èçͼ1£¬½«Ö±½ÇÈý½Ç°åµÄÖ±½Ç¶¥µã·ÅÔÚÕý·½ÐÎABCDÉÏ£¬Ê¹Ö±½Ç¶¥µãEÓëÕý·½ÐÎABCDµÄ¶¥µãDÖØºÏ£¬Ö±½ÇµÄÒ»±ß½»CBÓÚµãF£¬½«ÁíÒ»±ß½»BAµÄÑÓ³¤ÏßÓÚµã
ÇëÄãÖ±½Ó»Ø´ðEFºÍEGµÄÊýÁ¿¹ØÏµ£»
Àà±È̽¾¿
Èçͼ2£¬µ±Èý½Ç°åµÄÖ±½Ç¶¥µãEÔÚÕý·½ÐÎABCDµÄ¶Ô½ÇÏßBDÉÏÔ˶¯Ê±£¬ÆäÓàÌõ¼þ²»±ä£¬
ÖеĽáÂÛ»¹³ÉÁ¢Â𣿲¢ËµÃ÷ÀíÓÉ£»
ÍØÕ¹ÑÓÉì
Èçͼ3£¬½«¡°Õý·½ÐÎABCD¡±¸Ä³É¡°¾ØÐÎABCD¡±£¬µ±Ö±½Ç¶¥µãÒÆ¶¯µ½Í¼ÖÐËùʾλÖÃʱ£¬Èô
£¬
£¬Çó
µÄÖµ£®
![]()
¡¾´ð°¸¡¿£¨1£©
£»£¨2£©½áÂÛ³ÉÁ¢£¬ÀíÓɼû½âÎö£»£¨3£©
£®
¡¾½âÎö¡¿
£¨1£©ÏÈÅжϳöCDF=¡ÏADG£¬½ø¶øÅжϳö¡÷CDF¡Õ¡÷ADG£¬¼´¿ÉµÃ³öDF=DG½áÂÛµÃÖ¤£»
£¨2£©Ïȹ¹Ôì³öͼÐΣ¬Åжϳö¡ÏNEF=¡ÏMEG£¬½ø¶øÅжϳö¡÷NEF¡Õ¡÷MEG£¬¼´¿ÉµÃ³öEF=EG£»
£¨3£©ÏÈÅжϳö¡ÏNEF=¡ÏMEG£¬½ø¶øÅжϳö¡÷ENF¡×¡÷EMG£¬µÃ³ö
£¬ÔÙÖ¤Ã÷
¼´¿É½â¾öÎÊÌ⣻¼´¿ÉµÃ³ö½áÂÛ£®
Ö¤Ã÷£º
ËıßÐÎABCDÊÇÕý·½ÐΣ¬
£¬
£¬
£¬
£¬
ÔÚ
ºÍ
ÖУ¬
£¬
¡Õ
£¬
£¬
µãDºÍEÖØºÏ£¬
£»
½â£º½áÂÛ³ÉÁ¢£®
ÀíÓÉ£ºÈçͼ2£¬
![]()
¹ýµãE×÷
ÓÚN£¬
ÓÚM£¬
µãEÔÚÕý·½ÐÎABCDµÄ¶Ô½ÇÏßBDÉÏ£¬
ËıßÐÎEMBNÊÇÕý·½ÐΣ¬
£¬
£¬
£¬
£¬
ÔÚ
ºÍ
ÖУ¬
£¬
¡Õ
£¬
£®
½â£ºÈçͼ3£¬¹ýµãE×÷
ÓÚN£¬
ÓÚM£¬
ËıßÐÎEMBNÊǾØÐΣ¬
£¬
![]()
£¬
£¬
£¬
¡×
£¬
£¬
£¬
£¬
£¬
£¬
£¬
£¬
£®
¡¾ÌâÄ¿¡¿ÒÔϹØÓÚxµÄ¸÷¸ö¶àÏîʽÖÐ,a,b,c,m,n¾ùΪ³£Êý.
(1)¸ù¾Ý¼ÆËã½á¹ûÌîдÏÂ±í£º
¶þ´ÎÏîϵÊý | Ò»´ÎÏîϵÊý | ³£ÊýÏî | |
(2x + l)(x + 2) | 2 | 2 | |
(2x + 1)(3x - 2) | 6 | -2 | |
(ax + b)( mx + n) | am | bn |
(2)ÒÑÖª(x+ 3)2(x + mx +n)¼È²»º¬¶þ´ÎÏҲ²»º¬Ò»´ÎÏÇóm + nµÄÖµ.
(3) ¶àÏîʽMÓë¶àÏîʽx2-3x + 1µÄ³Ë»ýΪ2x4+ ax3 + bx2+ cx -3,Ôò2 a +b + cµÄֵΪ