题目内容
如图,?ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则?ABCD的面积为_____.
如图,⊙的直径,弦,点在上,则的度数是( ).
A. B. C. D.
先化简,再求值:(1﹣ )÷ ,其中x=﹣2.
如图①、图②、图③,在平面直角坐标系中,抛物线y=a(x﹣1)2+2﹣a与抛物线y=(a﹣2)(x﹣1)2+a分别与y轴交于点A、B,与对称轴x=1交于点C、D.作点A关于直线x=1的对称点A′,连接AA′,以AB、AA′为边作矩形ABEA′.设△ACD与矩形ABEA′重叠部分图形的面积为S.
(1)用含a的代数式表示线段CD的长.
(2)求AB=2AA′时的a值.
(3)当△ACD与矩形ABEA′重叠部分图形为三角形时,求S与a的函数关系式.
(4)作点D关于直线AA′的对称点D′,连接AD、A′D、A′D′、AD′,得到四边形ADA′D′.直接写出四边形ADA′D′与矩形ABEA′同时是正方形时的a值.
如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.若点F是AE的中点,求证:BF⊥AF.
我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是( )
A. 1.4(1+x)=4.5 B. 1.4(1+2x)=4.5
C. 1.4(1+x)2=4.5 D. 1.4(1+x)+1.4(1+x)2=4.5
如图,在等腰△ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=ax2+x+c经过A(8,0)、B(0,4)两点.
(1)求抛物线的解析式;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段CA、OA、AB和抛物线于点M、E、Q和点P,连接PA、PB,设直线l移动的时间为t(0<t<4)秒,当t为何值时,线段PQ最长?
(3)在(2)的条件下,抛物线上是否存在一点P,使△PAM的内角为直角?若存在,请直接写出点P的坐标;若不存在,请说明理由.(温馨提示:若直线y=k1x+b1与直线y=k2x+b2垂直,则k1•k2=﹣1).
如图所示的是由5个相同的小正方体组成的几何体,则这个几何体的左视图是( )
西海岸旅游旺季到来,为应对越来越严峻的交通形势,新区对某道路进行拓宽改造.工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的函数关系的大致图象是( )