题目内容
【题目】济宁市全运会会期间,邹城市投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+ bx;若将创收扣除投资和维修保养费用 称为游乐场的纯收益g(万元),g也是关于 x的二次函数;
(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;
(2)求纯收益g关于x的解析式;
(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?
【答案】(1)
;(2)
;(3)开放16个月后,收益达到最大.
【解析】试题分析:(1)根据题意确定x,y的两组对应值,再利用待定系数法求y的函数关系式;(2)根据纯收益g=开放后每月可创收33万元×月数x-游乐场投资150万元-从第1个月到第x个月的维修保养费用累计y,列出函数关系式即可;(3)根据二次函数的性质,可确定回收投资的月份.
试题解析:
由题意得代入得:
解之得:
;
由题意得:
;
,
当
时,
值
,
即开放16个月后,收益达到最大.
练习册系列答案
相关题目