题目内容

一家电信公司给顾客提供两种上网收费方式:
方式A:以每分a元的价格按上网时间计费,上网费用y(元)与上网时间x(分钟)之间的关系式是正比例函数;
方式B:除月收基本费c元外,再以分b元的价格按上网时间计费,上网费用y(元)与上网时间x(分钟)之间的关系式是一次函数;其图象如图所示.
(1)试求a,b,c的值;
(2)如何选择收费方式能使上网者更合算?
考点:一次函数的应用
专题:
分析:(1)根据函数图象就可以得出c为20元,在由总价÷时间就可以得出单位时间的收费而得出结论;
(2)由函数图象直接可以得出上网时间在400分钟以内时方式A合算,上网时间在400分钟时两种方式一样合算,上网时间按超过400分钟时方式B合算.
解答:解:(1)由函数图象,得
c=20元,
a=30÷400=0.075元,
b=(30-20)÷400=0.025元.
答:a=0.075元,b=0.025元,c=20元;
(2)由函数图象,得
当0<x<400时,方式A合算;
当x=400时,两种方式一样合算;
当x>400时,方式B合算.
点评:本题考查了总价÷数量=单价的运用,函数图象的运用,解答时认真分析函数图象的意义是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网