题目内容
下表给出了代数式x2+bx+c与x的一些对应值:| x | … | 0 | 1 | 2 | 3 | 4 | … |
| x2+bx+c | … | 3 | -1 | 3 | … |
(2)设y=x2+bx+c,则当x取何值时,y>0;
(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?
分析:根据与x轴的交点坐标得到什么时候y>0.讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.
解答:解:(1)这个代数式属于二次函数.当x=0,y=3;x=4时,y=3.
说明此函数的对称轴为x=(0+4)÷2=2.那么-
=-
=2,b=-4,经过(0,3),
∴c=3,二次函数解析式为y=x2-4x+3,
当x=1时,y=0;
当x=3时,y=0.(每空2分)(4分)
(2)由(1)可得二次函数与x轴的交点坐标,由于本函数开口向上,
可根据与x轴的交点来判断什么时候y>0.
当x<1或x>3时,y>0.(6分)
(3)由(1)得y=x2-4x+3,即y=(x-2)2-1.(7分)
将抛物线y=x2-4x+3先向左平移2个单位,再向上平移1个单位即得抛物线y=x2.(9分)
说明此函数的对称轴为x=(0+4)÷2=2.那么-
| b |
| 2a |
| b |
| 2 |
∴c=3,二次函数解析式为y=x2-4x+3,
当x=1时,y=0;
当x=3时,y=0.(每空2分)(4分)
(2)由(1)可得二次函数与x轴的交点坐标,由于本函数开口向上,
可根据与x轴的交点来判断什么时候y>0.
当x<1或x>3时,y>0.(6分)
(3)由(1)得y=x2-4x+3,即y=(x-2)2-1.(7分)
将抛物线y=x2-4x+3先向左平移2个单位,再向上平移1个单位即得抛物线y=x2.(9分)
点评:常由一些特殊点入与y轴的交点,对称轴等得到二次函数的解析式.
练习册系列答案
相关题目
下表给出了代数式x2+bx+c与x的一些对应值:
(1)根据表格中的数据,确定b、c的值,并填齐表格空白处的对应值;
(2)设y=x2+bx+c的图象与x轴的交点为A、B两点(A点在B点左侧),与y轴交于点C,P为线段AB上一动点,过P点作PE∥AC交BC于E,连接PC,当△PEC的面积最大时,求P点的坐标.
| x | … | -1 | 0 | 1 | 2 | 3 | 4 | … |
| x2+bx+c | … | 3 | -1 | 3 | … |
(2)设y=x2+bx+c的图象与x轴的交点为A、B两点(A点在B点左侧),与y轴交于点C,P为线段AB上一动点,过P点作PE∥AC交BC于E,连接PC,当△PEC的面积最大时,求P点的坐标.
下表给出了代数式x2+bx+c与x的一些对应值:
(1)根据表格中的数据,确定b、c的值,并填齐表格中空白处的对应值;
(2)代数式x2+bx+c是否有最小值?如果有,求出最小值;如果没有,请说明理由;
(3)设y=x2+bx+c的图象与x轴的交点为A、B两点(A点在B点左侧),与y轴交于点C,P点为线段AB上一动点,过P点作PE∥AC交BC于E,连接PC,当△PEC的面积最大时,求P点的坐标.
| x | … | -1 | 0 | 1 | 2 | 3 | 4 | … |
| X2+bx+c | … | 3 | -1 | 3 | … |
(2)代数式x2+bx+c是否有最小值?如果有,求出最小值;如果没有,请说明理由;
(3)设y=x2+bx+c的图象与x轴的交点为A、B两点(A点在B点左侧),与y轴交于点C,P点为线段AB上一动点,过P点作PE∥AC交BC于E,连接PC,当△PEC的面积最大时,求P点的坐标.
下表给出了代数式x2+bx+c与x的一些对应值:
函数y=x2的图象可以通过平移得到函数y=x2+bx+c的图象.请写出一种正确的平移 .
| x | … | 0 | 1 | 2 | 3 | 4 | … |
| x2+bx+c | … | 3 | -1 | 3 | … |