题目内容
若一个多边形的内角和与它的外角和相等,则这个多边形是( ).
A. 三角形 B. 四边形 C. 五边形 D. 六边形
解方程:(1) (2)
一组数据3,4,x,5,6,8的平均数是5,则这组数据的中位数是( )
A. 4 B. 4.5 C. 5 D. 6
如图,正方形ABCD的边长为2,点E.F分别在边AD、CD上,∠EBF=45°,则△EDF
的周长等于_______。
如图,Rt△ABC中,∠C= 90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是 ( )
A. B. C. 3 D.
如图①,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系;
(2)①将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
②若AB=2,CE=2,在图②的基础上将△CED绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.
如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为________.
如图,在中,,以为直径的⊙分别交、于点、,点在的延长线上,且.
()求证:直线是⊙的切线.
()若,,求点到的距离.
()在第()的条件下,求的周长.
(2016·四川眉山)已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是( )
A. B. C. D.