题目内容
如图,直线l1,l2被直线l3所截,且l1∥l2,若∠1=72°,∠2=58°,则∠3=
- A.45°
- B.50°
- C.60°
- D.58°
B
分析:根据两直线l1∥l2,推知内错角∠3=∠5;然后由对顶角∠2=∠4、三角形内角和定理以及等量代换求得∠3=50°.
解答:
解:∵l1∥l2,
∴∠3=∠5(两直线平行,内错角相等);
又∵∠2=∠4(对顶角),∠1=72°,∠2=58°,
∴∠5=50°(三角形内角和定理),
∴∠3=50°(等量代换).
故选B.
点评:本题考查是平行线的性质:两直线平行,内错角相等.
分析:根据两直线l1∥l2,推知内错角∠3=∠5;然后由对顶角∠2=∠4、三角形内角和定理以及等量代换求得∠3=50°.
解答:
∴∠3=∠5(两直线平行,内错角相等);
又∵∠2=∠4(对顶角),∠1=72°,∠2=58°,
∴∠5=50°(三角形内角和定理),
∴∠3=50°(等量代换).
故选B.
点评:本题考查是平行线的性质:两直线平行,内错角相等.
练习册系列答案
相关题目