题目内容
【题目】如图17,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:BD=CD.
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)
![]()
【答案】(1)证明见解析;(2)四边形AFBD为矩形;证明见解析;(3)AB=AC,且∠BAC=90°.
【解析】
试题(1)证明△AEF≌△DEC可得AF=DC,再根据条件AF=BD可利用等量代换可得BD=CD;
(2)首先判定四边形AFBD为平行四边形,再根据等腰三角形三线合一的性质可得AD⊥BC,进而可得四边形AFBD为矩形;
(3)当AB=AC,且∠BAC=90°时,四边形AFBD为正方形,首先证明∠ABC=45°,∠BAD=45°,可得AD=BD,进而可得四边形AFBD为正方形.
试题解析:(1)证明:∵AF∥BC,
∴∠AFE=∠ECD.
∵E是AD的中点,
∴DE=AE,
在△AEF与△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵AF=BD,
∴BD=CD;
(2)答:四边形AFBD为矩形;
解:∵AF=BD,AF∥BD,
∴四边形AFBD为平行四边形,
∵AB=AC,BD=DC,
∴AD⊥BC,
∴∠BDA=90°,
∴四边形AFBD为矩形;
(3)AB=AC,且∠BAC=90°;
∵AB=AC,且∠BAC=90°,
∴∠ABC=45°,
∵AD⊥BC,
∴∠BAD=45°,
∴AD=DB,
∴四边形AFBD为正方形.
【题目】如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.
(1)填出下表:
剪的次数 | 1 | 2 | 3 | 4 | 5 | 6 |
正方形个数 |
(2)如果剪了100次,共剪出 个小正方形?
(3)如果剪
次,共剪出 个小正方形?
![]()