题目内容

精英家教网已知△ABC周长为1,连接△ABC三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2010个三角形的周长为
 
分析:根据已知条件,首先可知各三角形都相似,然后根据题意可得规律:第n个三角形与原三角形的相似比为1:2n-1,又由△ABC周长为1,即可求得第2010个三角形的周长.
解答:解:∵连接△ABC三边中点构成第二个三角形,
∴新三角形的三边与原三角形的三边的比值为1:2,
∴它们相似,且相似比为1:2,
同理:第三个三角形与第二个三角形的相似比为1:2,
即第三个三角形与第一个三角形的相似比为:1:22
以此类推:第2010个三角形与原三角形的相似比为1:22009
∵△ABC周长为1,
∴第2010个三角形的周长为
1
22009

故答案为:
1
22009
点评:此题考查了相似三角形的性质与三角形中位线的性质.此题难度较大,解题的关键是找到规律:第n个三角形与原三角形的相似比为1:2n-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网