题目内容
在⊙O上作一条弦AB,再作一条与弦AB垂直的直径CD,CD与AB交于点E,则下列结论中不一定正确是( )
A.AE=BE B. C.CE=EO D.
已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若OE⊥CD,OF平分∠AOE,求∠AOF+∠COF的度数.
“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共人,则所列方程为( )
A、 B、 C、 D、
已知一次函数的图像经过点A(0,2)和点B(2,-2):(1)求出y关于x的函数表达式为 ;(2)当-2<y<4时,x的取值范围是 .
2015年1月1日起,杭州市城区实行全新的阶梯水价,之前为了解某社区居民的用水情况,随机对该社区20户居民进行了调查,下表是这20户居民2014年8月份用水量的调查结果:
那么关于这次用水量的调查和数据分析,下列说法错误的是( )
A.平均数是10(吨) B.众数是8(吨) C.中位数是10(吨) D.样本容量是20
关于的二元一次方程组的解互为相反数,求的值.
如图,正方形是由若干个相同的长方形组成,上下各有2个水平放置的长方形,中间竖放个长方形,则= .
教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图 (如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c ),大正方形的面积可以表示为c2,也可以表示为4×ab+(a-b)2由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,那么a2+b2=c2.
(1) 图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.
(2) 如图③,在Rt△ABC中,∠ACB=90°,AC=3 cm,BC=4 cm,则斜边AB上的高CD的长为________cm.
(3) 试构造一个图形,使它的面积能够解释(a+b)(a+2b)=a2+3ab+2b2,画在图④的网格中,并标出字母a,b所表示的线段.
甲、乙两同学从学校出发到县城去,甲每小时走4千米,乙每小时走6千米,甲先出发1小时,结果乙还比甲早到1小时。若设学校与县城间的距离为s千米,则以下方程正确的是( )
A. B.
C. D.