题目内容
如图,AB是⊙O的直径且AB=4,点C是OA的中点,过点C作CD⊥AB交⊙O于D点,点E是⊙O上一点,连接DE,AE交DC的延长线于点F,则AE•AF的值为_____.
古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
如图,在平面直角坐标系xOy中,函数的图象与直线y=x+1交于点A(1,a).
(1)求a,k的值;
(2)连结OA,点P是函数上一点,且满足OP=OA,直接写出点P的坐标(点A除外).
下图可以折叠成的几何体是( )
A. 三棱柱 B. 圆柱 C. 四棱柱 D. 圆锥
如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.
(1)求A、B两点的坐标;
(2)求△ABC的面积.
满足x-5<3x+1的x的最小整数是________.
若9a2+kab+16a2是一个完全平方式,那么k的值是( )
A. 2 B. 12 C. ±12 D. ±24
如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:
①∠BOE=70°; ②OF平分∠BOD;③∠POE=∠BOF; ④∠POB=2∠DOF.
其中正确的结论有_______________(填结论前面的序号)
若双曲线位于第二、四象限,则的取值范围是( )
A. B. C. D.