题目内容

①若
m
n
=
5
3
,则
m2+2mn+n2
m2-mn-2n2
=
 

②若
x
3
=
y
4
=
z
5
,则
x2-3xy+2z2
3x2+2xy-z2
=
 

③已知
1
a
+
1
b
=4,则
4a+3ab+4b
-3a+2ab-3b
=
 

④若m+n=5,mn=3,则
n
m
+
m
n
=
 
考点:分式的化简求值
专题:计算题
分析:①对所要求的式子进行变形,即分子和分母都除以式子n2,然后把条件代入即可求值;
②令
x
3
=
y
4
=
z
5
=k
,则x=3k,y=4k,z=5k,然后代入即可求值;
③由条件可以得到a+b=4ab,然后代入进行求值即可;
④把要求的式子进行变形为
(m+n)2-2mn
mn
,然后把条件代入即可求值.
解答:解:①
m2+2mn+n2
m2-mn-2n2
=
(
m
n
)2+
2m
n
+1
(
m
n
)2-
m
n
-2
=
(
5
3
)2+2×
5
3
+1
(
5
3
)2-
5
3
-2
=-8;
②令
x
3
=
y
4
=
z
5
=k
,则x=3k,y=4k,z=5k,
所以
x2-3xy+2z2
3x2+2xy-z2
=
(3k)2-3×3k×4k+2×(5k)2
3×(3k)2+2×3x×4k-(5k)2
=
-5k2
26k2
=-
5
26

③由
1
a
+
1
b
=4
得a+b=4ab,
所以
4ab+3ab+4b
-3a+2ab-3b
=
4(a+b)+3ab
-3(a+b)+2ab
=
4×4ab+3ab
-3×4ab+2ab
=
19ab
-10ab
=-
19
10

n
m
+
m
n
=
n2+m2
mn
=
(m+n)2-2mn
mn
=
52-2×3
3
=
19
3
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网