题目内容
如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,
,则BB1=________.
1
分析:过P作PD⊥B1C于D,根据等边三角形和平移性质得出∠PB1C=∠C=60°,求出△PCB1是等边三角形,设等边三角形PCB1的边长是2a,得出B1D=CD=a,由勾股定理求出PD,根据三角形的面积公式得出
×2a×
a=
,求出a即可.
解答:过P作PD⊥B1C于D,
∵将等边△ABC沿BC方向平移得到△A1B1C1,
∴∠PB1C=∠C=60°,
∴∠CPB1=60°,
∴△PCB1是等边三角形,
设等边三角形PCB1的边长是2a,
则B1D=CD=a,
由勾股定理得:PD=
a,
∵
,
∴
×2a×
a=
,
解得:a=1,
∴B1C=2,
∴BB1=3-2=1.
故答案为:1.
点评:本题考查了等边三角形的性质,平移的性质,勾股定理,三角形的面积的应用,解此题的关键是得出关于a的方程,题目比较典型,是一道比较好的题目.
分析:过P作PD⊥B1C于D,根据等边三角形和平移性质得出∠PB1C=∠C=60°,求出△PCB1是等边三角形,设等边三角形PCB1的边长是2a,得出B1D=CD=a,由勾股定理求出PD,根据三角形的面积公式得出
解答:过P作PD⊥B1C于D,
∵将等边△ABC沿BC方向平移得到△A1B1C1,
∴∠PB1C=∠C=60°,
∴∠CPB1=60°,
∴△PCB1是等边三角形,
设等边三角形PCB1的边长是2a,
则B1D=CD=a,
由勾股定理得:PD=
∵
∴
解得:a=1,
∴B1C=2,
∴BB1=3-2=1.
故答案为:1.
点评:本题考查了等边三角形的性质,平移的性质,勾股定理,三角形的面积的应用,解此题的关键是得出关于a的方程,题目比较典型,是一道比较好的题目.
练习册系列答案
相关题目