题目内容
如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;
(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.
【答案】分析:(1)根据等腰梯形的性质和等边三角形的性质以及全等三角形的判定方法证明△AED≌△DFA即可;
(2)如图作BH⊥AD,CK⊥AD,利用给出的条件和梯形的面积公式即可求出BC的长.
解答:(1)证明:在梯形ABCD中,AD∥BC,AB=CD,
∴∠BAD=∠CDA,
而在等边三角形ABE和等边三角形DCF中,
AB=AE,DC=DF,且∠BAE=∠CDF=60°,
∴AE=DF,∠EAD=∠FDA,AD=DA,
∴△AED≌△DFA(SAS),
∴AF=DE;
(2)解:如图作BH⊥AD,CK⊥AD,则有BC=HK,
∵∠BAD=45°,
∴∠HAB=∠KDC=45°,
∴AB=
BH=
AH,
同理:CD=
CK=
KD,
∵S梯形ABCD=
,AB=a,
∴S梯形ABCD=
=
,
而S△ABE=S△DCF=
a2,
∴
=2×
a2,
∴BC=
a.
点评:本题综合性的考查了等腰梯形的性质、等边三角形的性质、全等三角形的判定、全等三角形的性质以及等于直角三角形的性质和梯形、三角形的面积公式,属于中档题目.
(2)如图作BH⊥AD,CK⊥AD,利用给出的条件和梯形的面积公式即可求出BC的长.
解答:(1)证明:在梯形ABCD中,AD∥BC,AB=CD,
∴∠BAD=∠CDA,
而在等边三角形ABE和等边三角形DCF中,
AB=AE,DC=DF,且∠BAE=∠CDF=60°,
∴AE=DF,∠EAD=∠FDA,AD=DA,
∴△AED≌△DFA(SAS),
∴AF=DE;
(2)解:如图作BH⊥AD,CK⊥AD,则有BC=HK,
∵∠BAD=45°,
∴∠HAB=∠KDC=45°,
∴AB=
同理:CD=
∵S梯形ABCD=
∴S梯形ABCD=
而S△ABE=S△DCF=
∴
∴BC=
点评:本题综合性的考查了等腰梯形的性质、等边三角形的性质、全等三角形的判定、全等三角形的性质以及等于直角三角形的性质和梯形、三角形的面积公式,属于中档题目.
练习册系列答案
相关题目
| A、3cm | B、7cm | C、3cm或7cm | D、2cm |