题目内容
(3分)(2015•本溪)从﹣1、-、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是 .
若分式的值为0.则x= .
定义运算:对于任意实数、,都有=,等式右边是通常的加法、减法、及乘法运算,比如:25=2×(2-5)+1=2×(-3)+1=-6+1=-5.若3的值小于13,求的取值范围,并在如图所示的数轴上表示出来.
(14分)(2015•本溪)如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合
(1)求抛物线的解析式并直接写出它的对称轴;
(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式;
(3)点P是抛物线对称轴上一点,当△ABP时直角三角形时,请直接写出所有符合条件的点P坐标.
(10分)(2015•本溪)先化简,再求值:(x﹣2+)÷,其中x=(π﹣2015)0﹣+.
(3分)(2015•本溪)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为( )
A.4 B.﹣2 C. D.﹣
(3分)(2015•本溪)如图是由多个完全相同的小正方体组成的几何体,其左视图是( )
如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的侧面积为 cm2.
(8分)如图,△ABC是等边三角形,P为BC上一动点(不与B、C重合),以AP为边作等边△APE,连接CE.
(1)求证:AB∥CE;
(2)是否存在点P,使得AE⊥CE?若存在,指出点P的位置并证明你的结论;若不存,请说明理由.