题目内容
【题目】某公司生产某环保产品的成本为每件40元,经过市场调研发现:这件产品在未来两个月
天
的日销量
件
与时间
天
的关系如图所示
未来两个月
天
该商品每天的价格
元
件
与时间
天
的函数关系式为:![]()
根据以上信息,解决以下问题:
请分别确定
和
时该产品的日销量
件
与时间
天
之间的函数关系式;
请预测未来第一月日销量利润
元
的最小值是多少?第二个月日销量利润
元
的最大值是多少?
为创建“两型社会”,政府决定大力扶持该环保产品的生产和销售,从第二个月开始每销售一件该产品就补贴a元
有了政府补贴以后,第二个月内该产品日销售利润
元
随时间
天
的增大而增大,求a的取值范围.
![]()
【答案】
;
时,
的最大值为
元;(3)
时,W随t的增大而增大.
【解析】
利用待定系数法即可解决问题;
分别构建二次函数,利用二次函数的性质即可解决问题;
构建二次函数,利用二次函数的性质即可解决问题;
解:
当
时,设
,则有
,
解得
,
,
当
时,设
,则有
,
解得
,
.
由题意
,
当
时,
有最小值
元
,
,
时,
的最大值为
元![]()
由题意
,
对称轴
,
,
的取值范围在对称轴的左侧时W随t的增大而增大,
当
,
,
即
时,W随t的增大而增大.
练习册系列答案
相关题目
【题目】某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.