题目内容
解方程:
(1);(2).
若, ,则=_____________.
如图1,已知直线y=2x分别与双曲线, 交于P、Q(1,n)两点.
(1)求k的值.
(2)如图2,点A是双曲线上的动点,AB∥x轴,AC∥y轴,分别交双曲线于点B、C,连接BC.试探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;
(3)如图3,过点B作AC的平行线交直线y=2x于点D,请你进一步探索在点A运动过程中, tan∠ACB=tan∠ADB能否成立?若能,求出此时点A的坐标;若不能,请说明理由.
如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为
A.7.8米 B.3.2米 C.2.3米 D.1.5米
如图,在正方形网格中,每个小正方形的边长为1,格点△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).
(1)请在图中正确作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A′B′C′;
(3)点B′的坐标为 ,△A′B′C′的面积为 .
已知一次函数y=kx+1的图象经过点(3,-5),则k=________.
已知A、B两地相距900 m,甲、乙两人同时从A地出发,以相同速度匀速步行,20 min后到达B地,甲随后马上沿原路按原速返回,回到A地后在原地等候乙回来;乙则在B地停留10 min后也沿原路以原速返回A地,则甲、乙两人之间的距离s(m)与步行时间t(min)之间的函数关系可以用图象表示为 ( )
A. B.
C. D.
观察下列单项式: , , , , , , 请观察它们构成的规律,写出第个式子__________.
如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A关于直线m(直线m上各点的横坐标都为3)的对称点.
(1)在图中标出点A,B,C的位置并求出点C的坐标;
(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.