题目内容
计算=( )
A. B. 1 C. D.
如图,已知△ABC中,AB=AC=,BC=4.线段AB的垂直平分线DF分别交边AB、AC、BC所在的直线于点D、E、F.
(1)求线段BF的长;
(2)求AE:EC的值.
下列命题中,真命题是 ( )
A. 对角线相等的四边形是矩形 B. 对角线亘相平分的四边形是平行四边形
C. 对角线互相垂直的四边形是菱形 D. 对角线互相垂直平分的四边形是正方形
估计与的大小关系是:_______(填“>”“=”或“<”)
如图,在中,,,则=( )
A. B. C. D.
已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.
(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB=____________时,四边形MENF是正方形(只写结论,不需证明)
如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是____.
如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0) ,与过A点的直线相交于另一点D(3,) ,过点D作DC⊥x轴,垂足为C.
(1)求抛物线的表达式;
(2)点P在线段OC上(不与点O,C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM 面积的最大值;
(3)若P 是x 轴正半轴上的一动点,设OP 的长为t.是否存在t,使以点M,C,D,N 为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.
桌子上摆放了若干碟子,分别从三个方向上看其三视图如图所示,则桌子上共有碟子( ).
A. 17个 B. 12个 C. 9个 D. 8个