ÌâÄ¿ÄÚÈÝ
ÎÒ¹úËγ¯Êýѧ¼ÒÑî»ÔÔÚËûµÄÖø×÷¡¶Ïê½â¾ÅÕÂËã·¨¡·ÖÐÌá³ö¡°Ñî»ÔÈý½Ç¡±£¨Èçͼ£©£¬´Ëͼ½ÒʾÁË£¨a+b£©n£¨nΪ·Ç¸ºÕûÊý£©Õ¹¿ªÊ½µÄÏîÊý¼°¸÷ÏîϵÊýµÄÓйعæÂÉ£®
ÀýÈ磺£¨a+b£©0=1£¬ËüÖ»ÓÐÒ»ÏϵÊýΪ1£»£¨a+b£©1=a+b£¬ËüÓÐÁ½ÏϵÊý·Ö±ðΪ1£¬1£¬ÏµÊýºÍΪ2£»£¨a+b£©2=a2+2ab+b2£¬ËüÓÐÈýÏϵÊý·Ö±ðΪ1£¬2£¬1£¬ÏµÊýºÍΪ4£»£¨a+b£©3=a3+3a2b+3ab2+b3£¬ËüÓÐ

ËÄÏϵÊý·Ö±ðΪ1£¬3£¬3£¬1£¬ÏµÊýºÍΪ8£»
¡
¸ù¾ÝÒÔÉϹæÂÉ£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©£¨a+b£©4Õ¹¿ªÊ½¹²ÓÐ______ÏϵÊý·Ö±ðΪ______£»
£¨2£©£¨a+b£©nÕ¹¿ªÊ½¹²ÓÐ______ÏϵÊýºÍΪ______£®
ÀýÈ磺£¨a+b£©0=1£¬ËüÖ»ÓÐÒ»ÏϵÊýΪ1£»£¨a+b£©1=a+b£¬ËüÓÐÁ½ÏϵÊý·Ö±ðΪ1£¬1£¬ÏµÊýºÍΪ2£»£¨a+b£©2=a2+2ab+b2£¬ËüÓÐÈýÏϵÊý·Ö±ðΪ1£¬2£¬1£¬ÏµÊýºÍΪ4£»£¨a+b£©3=a3+3a2b+3ab2+b3£¬ËüÓÐ
ËÄÏϵÊý·Ö±ðΪ1£¬3£¬3£¬1£¬ÏµÊýºÍΪ8£»
¡
¸ù¾ÝÒÔÉϹæÂÉ£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©£¨a+b£©4Õ¹¿ªÊ½¹²ÓÐ______ÏϵÊý·Ö±ðΪ______£»
£¨2£©£¨a+b£©nÕ¹¿ªÊ½¹²ÓÐ______ÏϵÊýºÍΪ______£®
£¨1£©¸ù¾ÝÌâÒâÖª£¬£¨a+b£©4µÄÕ¹¿ªºó£¬¹²ÓÐ5Ï
¸÷ÏîϵÊý·Ö±ðΪ1¡¢£¨1+3£©¡¢£¨3+3£©¡¢£¨3+1£©¡¢1£¬
¼´£º1¡¢4¡¢6¡¢4¡¢1£»
£¨2£©µ±a=b=1ʱ£¬£¨a+b£©n=2n£®
¹Ê´ð°¸Îª£º£¨1£©5£¬1£¬4£¬6£¬4£¬1£»£¨2£©n+1£¬2n£®
¸÷ÏîϵÊý·Ö±ðΪ1¡¢£¨1+3£©¡¢£¨3+3£©¡¢£¨3+1£©¡¢1£¬
¼´£º1¡¢4¡¢6¡¢4¡¢1£»
£¨2£©µ±a=b=1ʱ£¬£¨a+b£©n=2n£®
¹Ê´ð°¸Îª£º£¨1£©5£¬1£¬4£¬6£¬4£¬1£»£¨2£©n+1£¬2n£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿