题目内容
已知⊙O的半径OA=2,弦AB,AC的长分别
,
,求∠BAC的度数.
过点O作OE⊥AB于E,OF⊥AC于F,
由垂径定理得,AE=
在Rt△AOE中,cos∠OAE=
在Rt△AOF中,cos∠OAF=
所以∠BAC=∠OAF-∠OAE=45°-30°=15°.
(2)当圆心O在AB、AC之间时,如图2所示,
过点O作OE⊥AB于E,OF⊥AC于F,
同样可得,∠OAE=30,∠OAF=45°,
∴∠BAC=∠OAF+∠OAE=45°+30°=75°.
综上所述,∠BAC的度数为15°或75°.
分析:题目没有给出图形,所以两条弦可能在圆心的同侧,也可能在圆心的两侧,因此应分两种情况,进行分类讨论.
点评:本题主要是渗透分类思想,培养学生的严密性思维和解题方法:确定图形--分析图形--数形结合--解决问题.
练习册系列答案
相关题目
已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )
| A、5cm | B、6cm | C、8cm | D、10cm |