题目内容
已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )
A. 7 B. 10 C. 11 D. 10或11
16的算术平方根是 ( )
A. 4 B. C. 8 D.
如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D是抛物线 y=﹣x2+6x上一点,且在x轴上方,则△BCD 面积的最大值为__________
如图,将?ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.
(1)求证:△BEF≌△CDF;
(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)证出BE=DC,根据平行四边形的判定与性质得到四边形BECD为平行四边形;
(2)欲证明四边形BECD是矩形,只需推知BC=ED即可.
试题解析:(1)∵四边形ABCD是平行四边形
∴AB=CD,AB∥CD,
又∵AB=BE,
∴BE=DC,
又∵AE∥CD,
∴四边形BECD为平行四边形;
(2)由(1)知,四边形BECD为平行四边形
∴OD=OE,OC=OB,
∵四边形ABCD为平行四边形,
∴∠A=∠BCD
又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,
∴∠OCD=∠ODC,
∴OC=OD,
∴OC+OB=OD+OE,即BC=ED,
∴平行四边形BECD为矩形.
【点睛】题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.
【题型】解答题【结束】23
我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是__.
在函数y=中,自变量x的取值范围是( )
A. x>3 B. x≥3 C. x>4 D. x≥3且x≠4
已知直线与轴交于点A(-6,0),与轴交于点B.
(1)求b的值;
(2)把△AOB绕原点O顺时针旋转90°后,点A落在轴的处,点B若在轴的处;
①求直线的函数关系式;
②设直线AB与直线交于点C,长方形PQMN是△的内接长方形,其中点P,Q在线段 上,点M在线段上,点N在线段AC上.若长方形PQMN的两条邻边的比为1∶2,试求长方形PQMN的周长.
反比例函数(>0)的图象在 ( )
A. 第一象限; B. 第四象限; C. 一、三象限; D. 二、四象限.
(1)x2=6x-;(2)(x+3)2+3(x+3)-4=0.