题目内容

如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是( )

A.
B.
C.
D.
【答案】分析:过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.
解答:解:过P点作PE⊥BP,垂足为P,交BC于E,
∵AP垂直∠B的平分线BP于P,
∠ABP=∠EBP,
又知BP=BP,∠APB=∠BPE=90°,
∴△ABP≌△BEP,
∴AP=PE,
∵△APC和△CPE等底同高,
∴S△APC=S△PCE
∴三角形PBC的面积=三角形ABC的面积=cm2
选项中只有B的长方形面积为cm2
故选B.
点评:本题主要考查面积及等积变换的知识点,过P点作PE⊥BP是解答本题的关键,证明出三角形PBC的面积和原三角形的面积之间的关系很重要,本题是一道非常不错的习题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网