题目内容
如图,(1)作△ABC的外接⊙O(用尺规作图,保留作图痕迹,不写作法);
(2)若AB=6cm,AC=BC=5cm,求⊙O的半径.
若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是 ______ .
如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
(1)写出图中一对全等的三角形.
(2)设的度数为x,∠的度数为,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.并加以证明。
如图,已知BC=AD,若根据“SAS”证明△ABC≌△BAD,需要添加一个条件,那么这个条件是:__.
一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.
(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.
①求抛物线的解析式;
②要使高为3米的船通过,则其宽度须不超过多少米?
(2)如图2,若把桥看做是圆的一部分.
①求圆的半径;
抛物线y=-(x-2)2+1的顶点坐标是______.
设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y1,y2,y3的大小关系为( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y2>y1 D. y3>y1>y2
已知一个布袋里装有2个红球,3个白球和1个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为_______.
9的平方根是( )
A. ± B. 3 C. ±3 D.