题目内容

18.如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴,点C在y轴的正半轴上,点F再AB上,点B,E在反比例函数y=$\frac{k}{x}$的图象上,OA=2,OC=6,则正方形ADEF的边长为$\sqrt{13}$-1.

分析 先确定B点坐标(2,6),根据反比例函数图象上点的坐标特征得到k=12,则反比例函数解析式为y=$\frac{12}{x}$,设AD=t,则OD=2+t,所以E点坐标为(2+t,t),再根据反比例函数图象上点的坐标特征得(2+t)•t=12,利用因式分解法可求出t的值.

解答 解:∵OA=2,OC=6,
∴B点坐标为(2,6),
∴k=2×6=12,
∴反比例函数解析式为y=$\frac{12}{x}$,
设AD=t,则OD=2+t,
∴E点坐标为(2+t,t),
∴(2+t)•t=12,
整理为t2+2t-12=0,
解得t1=-1+$\sqrt{13}$(舍去),t2=-1-$\sqrt{13}$,
∴正方形ADEF的边长为$\sqrt{13}$-1.
故答案为:$\sqrt{13}$-1.

点评 本题考查了反比例函数图象上点的坐标特征:反比例函数y=$\frac{k}{x}$(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网