题目内容
若|b+2|与(a﹣3)2互为相反数,则ba的值为( )
A. ﹣b B. C. ﹣8 D. 8
如图,在梯形ABCD中,AD∥BC,AB=DC=AD=9,∠ABC=70°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=110°.
(1)求证:△ABE∽△DEF.
(2)当点E为AD中点时,求DF的长;
(3)在线段AD上是否存在一点E,使得F点为CD的中点?若存在,求出AE的长度;若不存在,试说明理由.
【答案】(1)见解析;(2);(3)不存在,理由见解析
【解析】分析:(1)由AD∥BC可求得∠A=∠D=110°,由三角形外角可求得∠AEB=∠DFE,则可证得△ABE∽△DEF;
(2)当E为AD中点时,则可求得DE=AE=,利用相似三角形的性质可得到关于DF的方程,可求得DF的长;
(3)设AE=x,则DE=9﹣x,利用F为CD的中点可得DF=,利用相似三角形的性质可得到关于x的方程,解方程进行判断即可.
详解:(1)∵AB=DC=AD=9,AD∥BC,∴梯形ABCD为等腰梯形.
∵∠ABC=70°,∴∠A=∠D=180°﹣70°=110°.
∵∠BEF=110°,∴∠AEB+∠BEF=∠D+∠DFE,∴∠AEB=∠DFE,∴△ABE∽△DEF;
(2) 当E为AD的中点时,则AE=DE=.
∵△ABE∽△DEF,
∴=,即=,
∴DF=;
(3)不存在.理由如下:
若F为CD的中点,则DF=,设AE=x,则DE=9﹣x,同(2)可得:=,即=,
整理可得:x2﹣9x+=0,
∴△=(﹣9)2﹣4×=﹣81<0,
∴方程无实数根,
∴不存在满足条件的点E.
点睛:本题为相似三角形的综合应用,涉及相似三角形的判定和性质、等腰梯形的判定和性质及方程思想等知识.在(1)中利用外角的性质求得角相等是解题的关键,在(2)和(3)中利用相似三角形对应边成比例得到方程是解题的关键.本题考查了知识点较多,综合性较强,难度适中.
【题型】解答题【结束】24
综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是( )
A. 3 B. 15 C. ﹣3 D. ﹣15
数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为_____.
若x+3y=5,则代数式2x+6y﹣3的值是( )
A. 9 B. 10 C. 7 D. 15
数轴上A,B两点所表示的数分别是3,﹣2,则表示AB之间距离的算式是( )
A. 3﹣(﹣2) B. 3+(﹣2) C. ﹣2﹣3 D. ﹣2﹣(﹣3)
正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.
(1)请用树状图或列表的方法表示可能出现的所有结果;
(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.
小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离( )
A. 始终不变 B. 越来越远 C. 时近时远 D. 越来越近
定义运算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)?a -(b+1)?b的值为( )
A. 0 B. 2 C. 4m D. -4m