题目内容
宁波某水果店计划购进甲、乙两种新出产的水果共140千克,
| 进价(元/千克) | 售价(元/千克) | |
| 甲种 | 5 | 8 |
| 乙种 | 9 | 13 |
这两种水果的进价、售价如表所示:
(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?
(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?
24.
| 解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克, 根据题意可得: 5x+9(140﹣x)=1000, 解得:x=65, ∴140﹣x=75(千克), 答:购进甲种水果65千克,乙种水果75千克; (2)由图表可得: 设总利润为W,由题意可得出:W=3x+4(140﹣x)=﹣x+560, 故W随x的增大而减小,则x越小W越大, 因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍, ∴140﹣x≤3x, 解得:x≥35, ∴当x=35时,W最大=﹣35+560=525(元), 故140﹣35=105(kg). 答:当甲购进35千克,乙种水果105千克时,此时利润最大为525元. |