题目内容

7.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的关系.根据图象进行以下探究:
(1)甲、乙两地之间的路程为880千米;
(2)请解析图中点B的实际意义;
(3)求慢车的速度;
(4)求快车的速度.

分析 (1)由函数图象可知,当两车出发时间x=0时,两车间的距离为880千米,即甲、乙两地距离为880千米;
(2)由点B坐标可知,出发4小时后,甲、乙距离为0,即两车相遇;
(3)根据图象慢车行驶全程880千米,用时11小时,可得慢车速度;
(4)根据相等关系:慢车4小时行驶路程+快车4小时行驶路程=甲、乙两地距离,列方程解得.

解答 解:(1)由函数图象可知,x=0时,y=880,
故甲、乙两地之间的距离为880千米;
(2)根据点B坐标(4,0)可知,当慢车开出4小时,甲、乙两车间距离为0;
故点B表示的实际意义为:两车开出4小时后,甲、乙两车相遇;
(3)根据题意,慢车的速度为:880÷11=80(千米/小时),
故慢车速度为80千米/小时;
(4)设快车速度为x千米/小时,
∵4小时后,甲、乙两车相遇,
∴有:80×4+4x=880,解得:x=140,
则快车速度为140千米/小时;
故答案为:(1)880.

点评 本题主要考查读懂函数图象和利用方程解决实际问题的能力,结合题意读懂函数图象是解决问题的前提和基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网