题目内容

如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,

按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.

(1)当t为何值时,CP把△ABC的周长分成相等的两部分?

(2)当t为何值时,CP把△ABC的面积分成相等的两部分?

(3)当t为何值时,△BCP为等腰三角形?

【解析】
(1)在△ABC中,∵∠C=Rt∠,AC=8cm,BC=6cm,

∴AB=10cm,

∴△ABC的周长=8+6+10=24cm,

∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,

∴t=12÷2=6秒;

(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13cm,

∴t=13÷2=6.5秒;

(3)△BCP为等腰三角形时,分三种情况:

①如果CP=CB,那么点P在AC上,CP=6cm,此时t=6÷2=3秒;

如果CP=CB,那么点P在AB上,CP=6cm,此时t=5.4秒

(点P还可以在AB上,此时,作AB边上的高CD,利用等面积法求得CD=4.8,再利用勾股定理求得DP=3.6,所以BP=7.2,AP=2.8,所以t=(8+2.8)÷2=5.4秒)

②如果BC=BP,那么点P在AB上,BP=6cm,CA+AP=8+10﹣6=12cm,此时t=12÷2=6秒;

③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13cm,

t=13÷2=6.5秒;

综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.

【解析】

试题分析:(1)先由勾股定理求出△ABC的斜边AB=10cm,则△ABC的周长为24cm,所以当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,再根据时间=路程÷速度即可求解;

(2)根据中线的性质可知,点P在AB中点时,CP把△ABC的面积分成相等的两部分,进而求解即可;

(3)△BCP为等腰三角形时,分三种情况进行讨论:①CP=CB;②BC=BP;③PB=PC.

考点:等腰三角形的判定;三角形的面积.菁

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网