题目内容
化简:(1)﹣5m+4m﹣2n+6n+3m (2)(a2﹣6a﹣7)﹣3(a2﹣3a+4)
“国庆黄金周”的某天下午,出租车司机小张的客运路线是在南北走向的阜益路上,如果规定向南为正、向北为负,他这天下午行车里程(单位:千米)如下:
+3、+10、-5、+6、-4、-3、+12、-8、-6、+7、-16.
(1)求收工时小张距离下午出车时的出发点多远?
(2)若汽车耗油量为0.2L/km,这天下午小张共耗油多少升?
如图,已知抛物线顶点D(-1,-4),且过点C(0,-3).
(1)求此二次函数的解析式;
(2)抛物线与x轴交于点A、B,在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.
方程x2﹣4x+5=0根的情况是( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 有一个实数根 D. 没有实数根
【阅读理解】
我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.
【规律探究】
将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .
【解决问题】
根据以上发现,计算: 的结果为 .
若a2﹣3b=5,则6b﹣2a2+2017=_____.
一种原价均为m元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( )
A. 甲或乙或丙 B. 乙 C. 丙 D. 乙或丙
已知关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是 .
如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.
(1)求∠CDE的度数;
(2)求证:DF是⊙O的切线;
(3)若AC=DE,求tan∠ABD的值.