题目内容


如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3).反比例函数y1=图象经过点C,一次函数y2 =ax+b的图象经过点A、C

    (1)求反比例函数与一次函数的解析式;

    (2)观察图象,在第四项限内写出使得y1<y2成立的自变量x的取值范围;

    (3)若点P是反比例函数图象上的一点,且△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标,


解:(1)∵点A的坐标为(0.2),点B的坐标为(0,-3).∴AB=5.

 ∵四边形ABCD为正方形,∴点C的坐标为(5,- 3).

 ∵反比例函数y=的图象经过点C,

 ∴一3=,解得k= -15,∴反比例函数的解析式为y=-;……(2分)

 ∵一次函数的解析式为y=ax+b的图像经过点A,C,∴,解得

∴一次函数的解析式为y=-x+2;…………(4分)(2)0<x<5………………(6分)

  (3)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积,

  ∴×OA·|x|=52,∴×2|x| =25,解得x=±25.

  当x=25时,y=-=-;当x=-25时.Y==

 ∴P点的坐标为(25,-)或(-25,).……(9分)


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网