题目内容
如图,直线a∥b,直线c与a、b分别交于A、B两点,若∠1=46°,则∠2=( )
A.44° B.46° C.134° D.54°
如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),∠APE=90°,且点E在BC边上,AE交BD于点F.
(1)求证:①△PAB≌△PCB;②PE=PC;
(2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;
(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.
关于x的一元二次方程的根的情况是( )
A.没有实数根
B.只有一个实数根
C.有两个相等的实数根
D.有两个不相等的实数根
如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有 条.
下列一元二次方程中,没有实数根的是( )
A. B.
C. D.
如图,⊙O过?ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.
(1)求证:△ABH是等腰三角形;
(2)求证:直线PC是⊙O的切线;
(3)若AB=2,AD=,求⊙O的半径.
(1)计算:|﹣2|﹣+(﹣)﹣1;
(2)如图,直线AD∥BE∥CF,=,DE=6,求EF的长.
如图,点A(1,4),B(﹣4,a)在双曲线y=图象上,直线AB分别交x轴,y轴于C、D,过点A作AE⊥x轴,垂足为E,过点B作BF⊥y轴,垂足为F,连接AF、BE交于点G.
(1)求k的值及直线AB的解析式;
(2)判断四边形ADFE的形状,并写出证明过程.
已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( )
A.3 B.4 C.5 D.6