题目内容

如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.
(1)求证:O2C⊥O1O2
(2)证明:AB•BC=2O2B•BO1
(3)如果AB•BC=12,O2C=4,求AO1的长.

【答案】分析:(1)⊙O1与⊙O2都过点A,AO1是⊙O2的切线,可证O1A⊥AO2,又O2A=O2C,O1A=O1B可证O2C⊥O2B,故可证.
(2)延长O2O1交⊙O1于点D连接AD,可证∠BAD=∠BO2C,又因为∠ABD=∠O2BC,三角形相似,进而证明出结论.
(3)由(2)证可知∠D=∠C=∠O2AB,即∠D=∠O2AB,又∠AO2B=∠DO2A,三角形相似,列出比例式,进而求出AO1的长.
解答:(1)证明:∵O1A为⊙O2的切线,
∴∠O1AB+∠BAO2=90°,
又∵AO2=O2C,
∴∠BAO2=∠C,
又∵AO1=BO1
∴∠O1AB=∠ABO1=∠CBO2
∴∠CBO2+∠C=90°,
∴∠BO2C=90°,
∴O2C⊥O1O2

(2)证明:延长O2O1交⊙O1于点D,连接AD.
∵BD是⊙O1直径,
∴∠BAD=90°.
又由(1)可知∠BO2C=90°,
∴∠BAD=∠BO2C,
又∵∠ABD=∠O2BC,
∴△O2BC∽△ABD,

∴AB•BC=O2B•BD,
又∵BD=2BO1
∴AB•BC=2O2B•BO1

(3)解:由(2)证可知∠D=∠C=∠O2AB,即∠D=∠O2AB,
又∵∠AO2B=∠DO2A,
∴△AO2B∽△DO2A,

∴(AO22=O2B•O2D,
∵O2C=O2A,
∴(O2C)2=O2B•O2D①,
又由(2)AB•BC=O2B•BD②,
由①-②得O2C2-AB•BC=O2B2即42-12=O2B2
∴O2B=2,
又∵O2B•BD=AB•BC=12,
∴BD=6,
∴2AO1=BD=6,
∴AO1=3.
点评:本题主要考查切线的性质和相似三角形的判定,此题比较繁琐,做题时应该细心.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网