题目内容


如图,在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC = ∠DEC,延长BE依次交AC于G,交⊙O于H.

   (1)求∠AGB的度数;                          

   (2)若∠ABC= 45°,⊙O的直径等于17,BD =15,求CE的长.


证明:(1)连结AD                          

            ∵∠DAC = ∠DEC  ∠EBC = ∠DEC

            ∴∠DAC = ∠EBC                  

            又∵AC是⊙O的直径 ∴∠ADC=90°   

              ∴∠DCA+∠DAC=90° ∴∠EBC+∠DCA = 90°

              ∴∠BGC=180°–(∠EBC+∠DCA) = 180°–90°=90°

              ∴∠AGB=90°                    

   (2)∵∠BDA=180°–∠ADC = 90°  ∠ABC = 45°  ∴∠BAD = 45°

        ∴BD = AD

        ∵BD =15  ∴AD =15                                

        又∵∠ADC = 90°    AC =17

         ∴由勾股定理 DC=  =8

         ∴BC=BD+DC=8+15=23                                

         ∵∠EBC=∠DEC,∠BCE=∠ECD,

∴△BCE∽△ECD                                      

∴CE=                                     


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网