题目内容
如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( )
A. 30° B. 40° C. 45° D. 50°
如图,M是线段AC的中点,N是线段BC的中点.
(1)如果AC=8cm,BC=6cm,求MN的长.
(2)如果AM=5cm,CN=2cm,求线段AB的长.
“如果∠A和∠B的两边分别平行,那么∠A和∠B相等”是( )
A. 真命题 B. 假命题 C. 定理 D. 以上选项都不对
如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为 __.
方程的解是____.
已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.
解不等式组 并把解集在数轴上表示出来.
如图①,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上,修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道的宽为a米.
①②
(1)用含a的式子表示花圃的面积;
(2)如果甬道所占面积是整个长方形空地面积的,求此时甬道的宽;
(3)已知某园林公司修建甬道、花圃的造价y1(元)、y2(元)与修建面积x(平方米)之间的函数关系如图②所示.如果学校决定由该公司承建此项目,并要求修建的甬道宽不少于2米且不超过10米,那么甬道的宽为多少米时,修建的甬道和花圃的总造价最低?最低总造价为多少元?
解方程:6x4-35x3+62x2-35x+6=0.