题目内容

【题目】阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1 , y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得xp= ,同理yp= ,所以AB的中点坐标为().由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A、B两点间的距离公式为AB=.这两公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:

(1)已知M(1,﹣2),N(﹣1,2),直接利用公式填空:MN中点坐标为________,MN=________.

(2)如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,PAB的中点,过Px轴的垂线交抛物线于点C.

(a)A、B两点的坐标及C点的坐标;

(b)连结AB、AC,求证△ABC为直角三角形;

(c)将直线l平移到C点时得到直线l′,求两直线ll′的距离.

【答案】(1)(0,0);2;(2)(a)A( ,3﹣ );B( ,3+ ); C( );(b)证明见解析;(c).

【解析】

(1)根据中点坐标公式,两点间的距离公式,可得答案;
(a)根据解方程组,可得A,B点坐标,根据中点坐标公式,可得P点坐标,根据平行于y轴的直线横坐标相等,可得C点横坐标,根据自变量与函数值的对应关系,可得C点坐标;
(b)根据勾股定理及勾股定理的逆定理,可得答案;
(c)根据三角形的面积不同表示,可得关于CD的方程,根据解方程,可得答案.

(1)(0,0);2

(2)解:(a)联立直线、抛物线,得

解得

B( ,3+ ),A( ,3﹣ ).

PAB的中点,得

P( ,3)

x= 时,y=2x2= ,即C点坐标为( ).

(b)AB2=( 2+(3+ ﹣3+ 2=25;

BC2=( 2+(3+ 2= ﹣5

AC2=( 2+(3﹣ 2= +5

AC2+BC2=AB2

∴∠ACB=90°

∴△ABC是直角三角形;

(c)如图

CDABD点,CD 是两直线间的距离,

SABC= ABCD= ACBC,

×5CD= ×

解得CD=

两直线ll′的距离是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网