题目内容
计算下列各式:(1)
| 1 |
| a-b |
| 1 |
| a+b |
| 2a |
| a2+b2 |
| 4a3 |
| a4+b4 |
(2)
| x2+yz |
| x2+(y-z)x-yz |
| y2-zx |
| y2+(z+x)y+zx |
| z2+xy |
| z2-(x-y)z-xy |
(3)
| x3-1 |
| x3+2x2+2x+1 |
| x3+1 |
| x3-2x2+2x-1 |
| 2(x2+1) |
| x2-1 |
(4)
| (y-x)(z-x) |
| (x-2y+z)(x+y-2z) |
| (z-y)(x-y) |
| (x+y-2z)(y+z-2x) |
| (x-z)(y-z) |
| (y+z-2x)(x-2y+z) |
分析:(1)运用平方差公式分步通分;
(2)将各分式拆项,再两两抵消即可得出结果;
(3)先将各分式分解因式约分,再通分计算;
(4)注意到分母与分子的项与项之间的关系,如x-2y+z=(x-y)-(y-z),采用换元法简化式子.
(2)将各分式拆项,再两两抵消即可得出结果;
(3)先将各分式分解因式约分,再通分计算;
(4)注意到分母与分子的项与项之间的关系,如x-2y+z=(x-y)-(y-z),采用换元法简化式子.
解答:解:(1)
+
+
+
=
+
+
=
+
=
;
(2)
+
+
=
+
+
=
+
+
-
-
-
=0;
(3)
+
-
=
+
-
=
+
-
=0;
(4)设x-y=a,y-z=b,z-x=c,则
+
+
=-
-
-
=-
=
=1.
| 1 |
| a-b |
| 1 |
| a+b |
| 2a |
| a2+b2 |
| 4a3 |
| a4+b4 |
=
| 2a |
| a2-b2 |
| 2a |
| a2+b2 |
| 4a3 |
| a4+b4 |
=
| 4a3 |
| a4-b4 |
| 4a3 |
| a4+b4 |
=
| 8a7 |
| a8-b8 |
(2)
| x2+yz |
| x2+(y-z)x-yz |
| y2-zx |
| y2+(z+x)y+zx |
| z2+xy |
| z2-(x-y)z-xy |
=
| x(x-z)+z(x+y) |
| (x+y)(x-z) |
| y(x+y)-x(y+z) |
| (x+y)(y+z) |
| z(y+z)-y(z-x) |
| (z-x)(y+z) |
=
| x |
| x+y |
| z |
| x-z |
| y |
| y+z |
| x |
| x+y |
| z |
| x-z |
| y |
| y+z |
=0;
(3)
| x3-1 |
| x3+2x2+2x+1 |
| x3+1 |
| x3-2x2+2x-1 |
| 2(x2+1) |
| x2-1 |
=
| (x-1)(x2+x+1) |
| (x+1)(x2+x+1) |
| (x+1)(x2-x+1) |
| (x-1)(x2-x+1) |
| 2(x2+1) |
| (x+1)(x-1) |
=
| x-1 |
| x+1 |
| x+1 |
| x-1 |
| 2(x2+1) |
| (x+1)(x-1) |
=0;
(4)设x-y=a,y-z=b,z-x=c,则
| (y-x)(z-x) |
| (x-2y+z)(x+y-2z) |
| (z-y)(x-y) |
| (x+y-2z)(y+z-2x) |
| (x-z)(y-z) |
| (y+z-2x)(x-2y+z) |
=-
| ac |
| (a-b)(b-c) |
| ab |
| (b-c)(c-a) |
| cb |
| (c-a)(a-b) |
=-
| ac(c-a)+ab(a-b)+bc(b-c) |
| (a-b)(b-c)(c-a) |
=
| (a-b)(b-c)(c-a) |
| (a-b)(b-c)(c-a) |
=1.
点评:本题考查了分式的加减运算,难度较大.因各分式复杂,故须观察各式中分母的特点,恰当运用通分的相关策略与技巧.
练习册系列答案
相关题目