题目内容

10.如果三角形的三边长a,b,c满足$\sqrt{c-5}$+|12-b|+(a-13)2=0,你能确定这个三角形的形状吗?请说明理由.

分析 根据非负数的性质,求出a,b,c的值,再判断三角形的形状.

解答 解:这个三角形的形是直角三角形,
理由如下:
∵$\sqrt{c-5}$+|12-b|+(a-13)2=0,
∴a-13=0,12-b=0,c-5=0,
∴a=13,b=12,c=5,
∵122+52=132
∴这个三角形为直角三角形.

点评 本题根据非负数的性质,求得三角形的三边,考查勾股定理的逆定理的应用,熟练掌握非负数的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网