题目内容
在平面直角坐标系中,与点(1,2)关于y轴对称的点的坐标是( )
A.(﹣1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(﹣2,﹣1)
已知抛物线与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.
如图,在?ABCD中,AB=6,AD=9,∠BAD的平分线交DC的延长线于点E,CE的长为( )
A.2 B.3 C.4 D.2.5
(2015春•监利县期末)如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF= .
如图①,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形的面积,验证了一个等式,则这个等式是( )
A.(a+2b)(a﹣b)=a2+ab﹣2b2 B.a2﹣b2=(a+b)(a﹣b)
C.(a﹣b)2=a2﹣2ab+b2 D.(a+b)2=a2+2ab+b2
如图,AB是⊙O的直径,C、G是⊙O上两点,且C是弧AG的中点,过点C的直线CD⊥BG的延长线于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线;
(2)若,求证:AE=AO;
(3)连接AD,在(2)的条件下,若CD=2,求AD的长.
计算:﹣3tan30°+(π﹣3)0﹣()﹣1.
如图,已知抛物线y=x2+bx+c与y轴交于点C,与x轴交于点A、B,且AB=2,抛物线的对称轴为直线x=2;
(1)求抛物线的函数表达式;
(2)如果抛物线的对称轴上存在一点P,使得△APC周长的最小,求此时P点坐标
及△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.(直接写出结果)
如图,正三棱柱的主视图为( )
A. B. C. D.