题目内容

已知⊙O的直径为8,直线l上有一点M,满足OM=4,则直线l与⊙O的位置关系是


  1. A.
    相交
  2. B.
    相离或相交
  3. C.
    相离或相切
  4. D.
    相交或相切
D
分析:根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l和⊙O相交?d<r;②直线l和⊙O相切?d=r;③直线l和⊙O相离?d>r.分OM垂直于直线l,OM不垂直直线l两种情况讨论.
解答:∵⊙O的直径为8,
∴半径为4,
∵OM=4,
当OM垂直于直线l时,即圆心O到直线l的距离d=4=r,⊙O与l相切;
当OM不垂直于直线l时,即圆心O到直线l的距离d<4=r,⊙O与直线l相交.
故直线l与⊙O的位置关系是相切或相交.
故选D.
点评:本题考查直线与圆的位置关系.解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网