题目内容


在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.

(1)如图1,若∠BAC=90°,

①求证;△ABD≌△ACE;

②求∠BCE的度数.

(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.


考点: 全等三角形的判定与性质. 

分析: (1)①根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE即可;

②问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;

(2)问在第(1)问的基础上,将α+β转化成三角形的内角和.

解答: 解:(1)①∵∠BAC=∠DAE,

∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.

在△ABD与△ACE中,

∴△ABD≌△ACE(SAS);

②∵∠BAC=∠DAE,

∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.

在△ABD与△ACE中,

∴△ABD≌△ACE(SAS),

∴∠B=∠ACE.

∴∠B+∠ACB=∠ACE+∠ACB,

∴∠BCE=∠B+∠ACB,

又∵∠BAC=90°

∴∠BCE=90°;

(2)α+β=180°,

理由:∵∠BAC=∠DAE,

∴∠BAD+∠DAC=∠EAC+∠DAC.

即∠BAD=∠CAE.

在△ABD与△ACE中,

∴△ABD≌△ACE(SAS),

∴∠B=∠ACE.

∴∠B+∠ACB=∠ACE+∠ACB.

∴∠B+∠ACB=β,

∵α+∠B+∠ACB=180°,

∴α+β=180°

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网