题目内容
如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,
),则点C的坐标为( )
![]()
A. (﹣
,1) B. (﹣1,
) C. (
,1) D. (﹣
,﹣1)
在Rt△ABC中,∠C=90°,∠A, ∠B, ∠C所对的边分别为a,b,c, 已知a∶b=3∶4,c=10,则△ABC的面积为( )
A. 24 B. 12 C. 28 D. 30
查看答案.如图,等边△ABC边长为3cm,将△ABC沿AC向右平移1cm,得到△DEF,则四边形ABEF的周长( )
![]()
A. 9cm B. 10cm C. 11cm D. 12cm
查看答案点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为( )
A.(0,﹣9) B.(﹣6,﹣1) C.(1,﹣2) D.(1,﹣8)
查看答案无理数
的大小在以下两个整数之间( )
A. 1与2 B. 2与3 C. 3与4 D. 4与5
查看答案下列各组线段为边作三角形,不能构成直角三角形的是 ( )
A. 2 , 3 , 4 B. 1,
,
C. 5 , 12 , 13 D. 9, 40 , 41
- 题型:单选题
- 难度:中等
若
在实数范围内有意义,则x的取值范围是_________
石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示为________________m..
查看答案甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则根据题意列出的方程是( )
A.
=
B.
C.
D. ![]()
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE,下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE,其中正确的有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案在数轴上实数a,b的位置如上图所示,化简|a+b|+
的结果是( )
![]()
A. ﹣2a﹣b B. ﹣2a+b C. ﹣2b D. ﹣2a
查看答案若分式方程
无解,则m的值为( )
A. ﹣1 B. 0 C. 1 D. 3
查看答案 试题属性- 题型:填空题
- 难度:简单
已知点A
和点B
关于
轴对称,求
的值.
在数轴上画出表示
的点.
(不写做法,保留作图痕迹)
![]()
计算
①
②![]()
③![]()
④![]()
⑤
⑥![]()
一个直角三角形的斜边长比一直角边长大2,另一直角边长为6,则直角三角形的斜边长为____
查看答案将点
向下平移3个单位长度,向左平移2个单位长度后得到点Q(x,-1),则
=__________.
若已知
,那么
的值为 ___________
- 题型:解答题
- 难度:中等
如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为______cm2.
![]()
大于
且小于
的所有整数是__.
如果
的平方根等于
,那么
______.
9的平方根是_______
查看答案已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )
![]()
A、25海里 B、30海里 C、35海里 D、40海里
查看答案如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,
),则点C的坐标为( )
![]()
A. (﹣
,1) B. (﹣1,
) C. (
,1) D. (﹣
,﹣1)
- 题型:填空题
- 难度:简单
下列各组线段为边作三角形,不能构成直角三角形的是 ( )
A. 2 , 3 , 4 B. 1,
,
C. 5 , 12 , 13 D. 9, 40 , 41
下列式子正确的是( )
A.
=±4 B. ±
=4 C.
=-4 D. ±
=±4
下列二次根式中的最简二次根式是 ( )
A.
B.
C.
D. ![]()
在实数0.333…,
,
,-π,3.1415,2.010010001…(相邻两个1之间0的个数逐渐增加)中,无理数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案在△ABC中,P为边AB上一点.
(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;
(2)若M为CP的中点,AC=2,
① 如图2,若∠PBM=∠ACP,AB=3,求BP的长;
② 如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.
![]()
如图,在Rt△ACB中,∠C=90°,AC=16cm,BC=8cm,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为4cm/s,Q点的运动速度为2cm/s,那么运动几秒时,△ABC和△PCQ相似?
![]()
- 题型:单选题
- 难度:中等
如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)求证:四边形BECF是菱形;
(2)若四边形BECF为正方形,求∠A的度数.
![]()
万达旅行社为吸引市民组团去黄山风景区旅游,推出了如下的收费标准:
![]()
宿州高铁新区组织员工去黄山风景区旅游,共支付给万达旅行社旅游费用27 000元,请问该单位这次共有多少员工去黄山风景区旅游?
查看答案如图,Rt
中,
CD是斜边AB的高.
求证:
.
![]()
如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(-4,1),点B的坐标为(-2,1).
![]()
(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1并写出A1点的坐标;
(2)以原点O为位似中心,位似比为2,在第二象限内作△ABC的位似图形△A2B2C2,并写出C2的坐标.
查看答案如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.
(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画图步骤;
(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.
![]()
解方程:x+5=x2-25.
查看答案 试题属性- 题型:解答题
- 难度:中等
下列条件中能使平行四边形ABCD为菱形的是( )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A. ①③ B. ②③ C. ③④ D. ①②③
A 【解析】试题解析: ∵AC⊥BD,四边形ABCD是平行四边形, ∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,∴①错误; ∵四边形ABCD是平行四边形, ∴平行四边形ABCD是矩形,∴②正确; ∵AB=BC,四边形ABCD是平行四边形, ∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,∴③错误; ∵四边形ABCD是平行四边形...如图,几何体的左视图是( )
![]()
![]()
A. (A) B. (B) C. (C) D. (D)
查看答案一元二次方程x(x-3)=4的解是( )
A. 1 B. 4 C. -1或4 D. 1或-4
查看答案已知:点P是∠MAN的角平分线上一点,PB⊥AM于B,PC⊥AN于C.
(1)如图1,点D、E分别在线段AB、AC上,且∠DPE=
∠BPC,求证:DE=BD+CE;
![]()
(2)如图2,若D在AB的延长线上,E在直线AC上,则DE、BD、CE三者的数量关系变化吗?若变化,请直接写出结论即可。
![]()
阅读下列材料:
(1)解方程: ![]()
【解析】
方程化为:
.
即化为:(2x-3)(x-1)=0,
∴ 2x-3=0或x-1=0,
解得:x=
或x=1.
∴方程的根为:
,
.
(2)求解分式方程的过程是:将分式方程化为整式方程,然后求解整式方程,然后将整工方程的根代入验根,舍去增根,得到的根就是原方程的根.
参考上述材料,解决下列问题:
(1)解方程:
;
(2)若方程
的一个解是x=1,则方程的其他解是__________.
已知:如图,Rt△ABC中,∠BAC=90°.
(1)按要求作图:(保留作图痕迹)
![]()
①延长BC到点D,使CD=BC;
②延长CA到点E,使AE=2CA;
③连接AD,BE并猜想线段AD与BE的大小关系;
(2)证明(1)中你对线段AD与BE大小关系的猜想.
【解析】
(1)AD与BE的大小关系是________________.
(2)证明:
查看答案 试题属性- 题型:单选题
- 难度:中等
若|x+2|+|y﹣3|=0,则x﹣y的值为_____.
-5 【解析】由|x+y|+|y﹣3|=0,可得x+y=0,y﹣3=0,解得 y=3,x=﹣3.所以x﹣y=﹣3﹣3=﹣6.图中以点O为端点的射线有_____条,图中共有_____条线段.
![]()
如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是_____.
![]()
如图所示,边长为a的正方形中阴影部分的面积为( )
![]()
A. a2﹣π(
)2 B. a2﹣πa2 C. a2﹣πa D. a 2﹣2πa
下列各组整式中不是同类项的是( )
A. 3a2b与﹣2ba2 B. 2xy与
yx C. 16与﹣
D. ﹣2xy2与3yx2
单项式
的系数与次数分别是( )
A.
和3 B. ﹣5和3 C.
和2 D. ﹣5和2
- 题型:填空题
- 难度:中等