题目内容
【题目】如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是( ) ![]()
A.90°
B.80°
C.50°
D.30°
【答案】B
【解析】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,
∵∠A=40°,
∴∠A′=40°,
∵∠B′=110°,
∴∠A′CB′=180°﹣110°﹣40°=30°,
∴∠ACB=30°,
∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,
∴∠ACA′=50°,
∴∠BCA′=30°+50°=80°.
故选:B.
首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数y=
x2+
的图象与性质.
小东根据学习函数的经验,对函数y=
x2+
的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数y=
x2+
的自变量x的取值范围是
(2)下表是y与x的几组对应值.
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ |
|
| 1 | 2 | 3 | … |
y | … |
|
| ﹣ | ﹣ | ﹣ |
|
|
|
| m | … |
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; ![]()
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,
),结合函数的图象,写出该函数的其它性质(一条即可) .