题目内容

如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,

(1)的值为  

(2)求证:AE=EP;

(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.

考点:

正方形的性质;全等三角形的判定与性质;平行四边形的判定.

分析:

(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;

(2)在BA边上截取BK=NE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;

(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.

解答:

(1)解:∵四边形ABCD是正方形,

∴∠B=∠D,

∵∠AEP=90°,

∴∠BAE=∠FEC,

在Rt△ABE中,AE==

∵sin∠BAE==sin∠FEC=

=

(2)证明:在BA边上截取BK=NE,连接KE,

∵∠B=90°,BK=BE,

∴∠BKE=45°,

∴∠AKE=135°,

∵CP平分外角,

∴∠DCP=45°,

∴∠ECP=135°,

∴∠AKE=∠ECP,

∵AB=CB,BK=BE,

∴AB﹣BK=BC﹣BE,

即:AK=EC,

易得∠KAE=∠CEP,

∵在△AKE和△ECP中,

∴△AKE≌△ECP(ASA),

∴AE=EP;

(3)答:存在.

证明:作DM⊥AE于AB交于点M,

则有:DM∥EP,连接ME、DP,

∵在△ADM与△BAE中,

∴△ADM≌△BAE(AAS),

∴MD=AE,

∵AE=EP,

∴MD=EP,

∴MDEP,

∴四边形DMEP为平行四边形.

点评:

此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网